Potential for hot groundwater in Portugal

Carla Lourenço Luís Duarte Silva

Direção de Serviços de Recursos Hidrogeológicos e Geotérmicos

Direção-Geral de Energia e Geologia

1. GEOTHERMAL OCCURRENCES

Due to its complex and diverse geology, mainland Portugal has an appreciable geothermal potential, evidenced by the high number of occurrences with T> 20°C, used for thermal purposes since ancient times.

Numerous geothermal occurrences are inventoried, with greater incidence in the north and center-west of the country:

Low enthalpy – Temperature between 30°C and 73°C:

50 to 73°C
40 to 49°C
30 to 39°C

Very Low enthalpy – Temperature between > 20°C to 29°C

To date, mainland Portugal Geothermal Potential is in the domain of low and very low enthalpies.

1. GEOTHERMAL OCCURRENCES - GEOLOGICAL FRAMEWORK

There is a clear predominance of geothermal occurrences in the **Central Iberian Zone** (63%) and the **Western Meso-Cenozoic Sedimentary Basin** (25%).

Higher temperature occurrences are directly related to major tectonic accidents such as Penacova-Régua-Verin Fault or Manteigas-Vilariça-Bragança Fault.

It is generally at the intersection between the major regional faults and their conjugates that the most suitable conditions for the rise of geothermal fluids from deep crustal zones are created.

Techno-stratigraphic framework of geothermal occurrences and main active structures (according to Cabral et al. 2011) in mainland Portugal. (geological background adapted from the 1: 1000 000 Geological Map of Portugal, LNEG, 2010)

53% of geothermal occurrences correspond to **sulfur waters** characterized by the presence of reduced sulfur forms and high pH values (> 8) and generally weakly mineralized.

Most are associated with the variscal granites of the Central Iberian Zone. In the **western Meso-Cenozoic Sedimentary Basin** there are also some sulfur waters, but in this case they are hypersaline waters and occur depending on diapiric structures.

Chemism of Geothermal Occurrences in Mainland Portugal (geological chart adapted from the Geological Map of Portugal to scale 1/1 000 000, LNFG 2010)

Bicarbonated waters are the second most common chemical type of geothermal occurrences (23%).

They are generally weakly mineralized and the pH is close to neutrality.

They occur most often in the Western and Algarvian Meso-Cenozoic Rim.

Chlorinated / sulphated waters represent 16% of occurrences and occur on the western mesocenozoic Rim. Its composition is influenced by the presence of evaporites in the diapiric zones. They have high levels of chlorides, sulfates, sodium and calcium.

TM reaches 35 000 mg/L

Chemism of Geothermal Occurrences in Mainland Portugal (geological chart adapted from the Geological Map of Portugal to scale 1/1 000 000, LNEG, 2010)

Silicate waters (5%) occur in association with quartzites in the Central Iberian zone. They are hyposaline waters, with TM < 200 mg/L.

The 3 known occurrences are chlorinated, sodium and potassic and the maximum recorded temperature is 28 °C.

Gasocarbon waters (3%) are naturally enriched in CO2 (carbon dioxide content greater than 250 mg/L).

Two occurrences are located in deep active fault zones. One has a temperature of 21 °C and another of 76 °C.

In the chemical composition they are both sodium bicarbonated.

Chemism of Geothermal Occurrences in Mainland Portugal (geological chart adapted from the Geological Map of Portugal to scale 1/1 000 000, LNEG, 2010)

NIO	Dosignação	Temp. máxima	Quiminno	Minoralização total	31	Granjal	38	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada
N.	Designação	registada (°C)	Quimismo	Mineralização total	32	Longroiva	47	Sulfúrea, bicarbonatada, sódica	Fracamente mineralizada
					33	Lumiar	50	Bicarbonatada, cálcica, magnesiana	Hipersalina
1	Alcaçarias do Duque	30	Cloretada, sódica	Fracamente mineralizada	34	Luso	27	Silicatada, cloretada, sódica, potássica	Hipossalina
2	Alcafache	51	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada	35	Malhada Quente	28	Bicarbonatada, sódica, sulfatada	Fracamente mineralizada
3	Alferce	27	Bicarbonatada, sódica	Fracamente mineralizada	. 36	Moimenta	21	Sulfúrea, bicarbonatada, sódica	Fracamente mineralizada
4	Almeida	35	Sulfúrea, bicarbonatada, sódica	Fracamente mineralizada	37	Moledo	45	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada
5	Amieira	27	Cloretada, cálcica, sódica	Fracamente mineralizada	38	Monção	49	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada
6	Aregos	59	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamentemineralizada	. 39	Monchique	32	Bicarbonatada, sódica, fluoretada	Fracamente mineralizada
7	Arrábidos	29	Sulfúrea, cioretada, sódica		40	Monfortinho	31	Silicatada, cloretada, sódica, potássica	Hipossalina
8	Azenha	29	Cloretada, sódica	Fracamente mineralizada	41	Monte da Pedra	21	Sulfúrea, bicarbonatada, sódica	Fracamente mineralizada
9	Bem Saúde	21	Gasocarbónica, bicarbonatada, sódica	Hipersalina	42	Moura	22	Bicarbonatada, cálcica, cloretada, sódica	Fracamente mineralizada
10	Bicanho	28	Cloretada, cálcica, magnesiana, sódica	Fracamente mineralizada	43	Murtas	23	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada
_ 11	Caldas da Rainha	36	Sulfúrea, cloretada, sulfatada, sódica, cálcica, magnesiana	Hipersalina	44	Oeiras	30	Bicarbonatada, sódica	Fracamente mineralizada
12	Caldas e Fonte Santa	47	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada	45	Piedade	25	Cloretada, bicarbonatada, sódica	Hipersalina
13	Caldelas	33	Bicarbonatada, cálcica, fluoretada	Hipossalina	46	Quarteira	21	Bicarbonatada, sódica, cálcica, magnesiana	
14	Caldinhas	36	Sulfúrea, cloretada, sódica, fluoretada	Fracamente mineralizada	47	Salcadas da Batalha	20	Cloretada sódica	Hipersaina
15	Canaveses	34	Sulfúrea, fluoretada, bicarbonatada, sódica	Fracamente mineralizada	48	Sair	20	Cloretada, sódica	Hipersaina
16	Carlão	29	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada	49	Sancerni	47	Sulfúrea hirarbonatada sódica fluoretada	Eracamente mineralizada
_ 17	Carvalhal	60	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada	- 50	Santo António	25	Bicarbonatada, cálcica	Fracamente mineralizada
18	Carvalhelhos	22	Bicarbonatada, sódica, fluoretada	Fracamente mineralizada	- 51	São Joma	23	Sulfúrea cloretada sódica	Fracamente mineralizada
19	Cavaca	29	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada	50	Cin Lourence	2.5	Sulfiers biesthonatada ródies entérries	Eracamente mineralizada
20	Chaves	76	Gasocarbónica, bicarbonatada sódica, fluoretada	Hipersalina	+ 50	Sin Minuel date Autor	00	Sulfúres, bicarbonatada, sódica	Eracamente mineralizada
21	CorgasBuçaco	22	Bicarbonatada, cálcica	Fracamente mineralizada	- 54	São Disto	22	Sulfúrea, bicarbonatada, sódica	Eracamente mineralizada
_ 22	Cró	25	Sulfúrea, bicarbonatada, sódica	Fracamente mineralizada	- 55	São Padro de d	87	Sulfures, bicarbonatada, sódica Rusentada	Eracamente mineralizada
23	Cucos	34	Cloretada, sódica, fluoretada	Hipersalina	- 50	Cin Chatter	07	Sundrea, bicarbonacada, sodica, nuorecada	Fracamente mineralizada
24	Eirogo	25	Sulfúrea, cloretada, bicarbonatada, sódica, fluoretada	Fracamente mineralizada	+ 57	Calue Calvestre	22	Bical Domatadia, Calcica Sulfriena, bicarbonatadia, eódera	Pracamente mineralizada
25	Envendos	22	Silicatada, cloretada, sódica, potássica	Hipossalina	- 50	Teimee	20	Sulfures, bicarbonacada, sódica. Busestada	Eragamente mineralizada
26	Estoril	35	Cloretada, sódica	Hipersalina	1 50	Tapas Thebaix de Come	30	Sundrea, bicarbonatada, sodica, nuoretada	Fracamente mineralizada
27	Felgueira	36	Sulfúrea, bicarbonatada, sódica, fluoretada	Fracamente mineralizada		Unnas da Serra	37	Sulfurea, bicarbonatada, sodica, fluoretada	Fracamente mineralizada
28	Fonte Quente	24	Cloretada, bicarbonatada, sódica	Fracamente mineralizada	. 00	Virialio	26	Bicarbonatada, cioretada, sodica, calcica	Hipersaina
29	Gaeiras	35	Sulfúrea, sulfatada, cloretada, sódica, cálcica	Hipersalina	. 61	Vizela	50	Sulfurea, bicarbonatada, fluoretada, sódica	Fracamentemineralizada
30	Gerês	47	Bicarbonatada, sódica, fluoretada, tiossulfatada	Fracamente mineralizada			•		

Temperatura das ocorrências geotérmicas (°C)

1. GEOTHERMAL OCCURRENCES - USE

Most direct uses of geothermal heat are made from qualified resources such as natural mineral waters and geothermal resources.

In situations where the temperature is higher, it is necessary to cool the water to a temperature that allows the thermal practices.

Of the 61 geothermal occurrences identified, 45 are qualified as Natural Mineral Water

The heat energy from the warm waters that occur in mainland Portugal has long been used only for **balneotherapy**, a practice used since the time of the Roman occupation.

Concessionaires must make the best use of resources according to appropriate technical standards and in harmony with the public interest of making the best use of these assets.

There is a growing interest from the concessionaires in the use of water, also as a geothermal resource, for the **air conditioning not only of the changing rooms, but also of swimming pools, hotels to support the thermal activity, in the production of DHW**, etc.

DGEG, through its legal resource management mechanisms, has been making concessionaires aware of the possibility of using the heat of waters above 20 °C.

preparation of feasibility studies for the use of heat from the waters

Currently, of the 61 existing geothermal occurrences, only 7 have a dual qualification as **Natural Mineral Water** and **Geothermal Resource**. In 6 of them the energy is already used in direct heating, or using heat exchangers:

CALDAS DE MONÇÃO 51°C

Geothermal exploitation began in March 2015. It is used for heating the Spa, public swimming pools, hotel and public buildings. It is currently in a trial period.

2. THE RESOURCE - USE

CALDAS DE CHAVES 73°C

Geothermal exploitation began in the 1980s.

It was, in mainland Portugal, the first project to use heat in a district heating network, for air conditioning and DHW production of two hotels, the Spa and also for heating a swimming pool.

CALDAS DE VIZELA 50°C

Excess flow is used to heat a swimming pool and for air conditioning and produce DHW for an hotel located near the thermal baths.

The geothermal resource is used for air conditioning of the Spa and also for the production of DHW and heating of the nearby rural hotel outdoor swimming pool.

2. THE RESOURCE - USE

TERMAS DO CARVALHAL 60°C

Several studies are underway with a view to the development of geothermal projects.

TERMAS DE S. PEDRO DO SUL 69°C

Geothermal exploitation began three decades ago. The Polo das Termas, which has been in operation since 2001, has a geothermal station for air conditioning and DHW production for two thermal spas and two hotels. At the Polo do Vau, located about 2 km south of S. Pedro do Sul, the geoheat has already been used directly to heat tropical fruit greenhouses and is currently under reformulation.

BANHO DE ALCAFACHE 51°C

Since 2003, the spa has been air-conditioned from the geothermal resource.

2. THE RESOURCE - POTENTIAL

There is a high potential for the increase use of geothermal resources:

By direct use from deep aquifers

From Enhanced Geothermal Systems – EGS

Recognition of the existence of this potential in the country led in 2010 to the granting to private investors the rights to prospect and research Geothermal Resources.

Extendable throughout the country there is the potential to develop **geothermal heat pumps** for building air conditioning and DHW production in normal geothermal gradient zones.

Geothermal Heat Pumps

⁴⁹Surface Geothermal Projects \bigcirc

The development of geothermal systems for building air conditioning and DHW production as emerging technology (GHP) has interesting potential from the point of view of both availability and resource use.

As the national authority and organization with information and registration of the geothermal resources of mainland Portugal, DGEG decided to implement a strategy to assess the state of geothermal use, with a view to raising awareness, enhancing and creating conditions for the sustainable development of this form of renewable energy.

PUBLICATION

Made predominantly a technical approach to the use of geothermal energy

ÍNDICE

PREÂMBULO					
1. INTRODUÇÃO E CONCEITOS					
2. POTENCIAL GEOTÉRMICO	8				
2.1 Introdução					
2.2 Estrutura interna da Terra					
2.3 Reservatórios e recursos geotérmicos	11				
2.4 Ocorrências geotérmicas em Portugal Continental	11				
2.5 Enquadramento geológico	14				
2.6 Quimismo das ocorrências geotérmicas	18				
2.7 Utilização da energia geotérmica em Portugal Continental	20				
2.8 Potencial geotérmico em Portugal Continental	23				
2.9 Ocorrências geotérmicas dos Açores	25				
2.9.1 Quimismo das ocorrências geotérmicas de baixa entalpia dos Açores	25				
2.9.2 Utilização da energia geotérmica nos Açores	26				
2.9.3 Potencial geotérmico dos Açores	27				
3. A TECNOLOGIA	32				
3.1 Aplicações térmicas	32				
3.1.1 Sistemas para uso direto de recursos geotérmicos	32				
3.1.2 Sistemas geotérmicos superficiais	33				
3.2 Produção de eletricidade	37				
3.2.1 Geotermia de média e alta entalpia	37				
3.2.2 Geotermia estimulada	39				
3.3 Redes de aquecimento geotérmico	40				

GEOTERMIA

ENERGIA RENOVÁVEL EM PORTUGAL

www.dgeg.gov.pt Áreas setoriais/Recursos Hidrogeológicos e Geotérmicos/Brochura de Geotermia-dezembro

INTERNATIONAL SEMINAR

۵	Seminário Internacional Energia Geotérmica Uma aposta no futuro		São Pedro do Sul 13 de dezembro de 2017
8:45	Acreditação dos Participantes	14:00	Painel II - Recursos Geotérmicos no Mundo Mederador - Prof. Aleidos Parriro, Asenciação Partura una do Coálaron
9:15	Sessão de Abertura Presidente da Câmara de São Pedro do Sul, Vítor Figueiredo Diretor Geral de Energia e Geologia, Mário Guedes		Moderador - Pro: Alcoes Perera, Associação Portuguesa de Geologos Orador da Agência Internacional de Energias Renováveis (IRENA) Gilobal Geothermal Alliance *
10:00	Apresentação da Brochura "Geotermia – Energia Renovável em Portugal" Diretora de Serviços da Direção Geral de Energía e Geología, Carla Lourenço		Orador do Conselho Europeu de Energía Geotérnica (EGEO) * Orador da Comissão Europeia - DGEnergía - Geothermal Communities * Debate 15 min
10:15	Potencialidades do Aproveitamento Geotérmico em Portugal Continental Representantes da Direção de Serviços de Recursos Hidrogeológicos e Geotérmicos da DGEG, Teresa Cunha e José Cruz	15:15	Painel III – Aproveitamento de Recursos Geotérmicos na Europa Moderador – Prof. Luís Coelho, Instituto Politécnico de Setúbal Orador do Instituto para a Diversificação e Deservolvimento da Energía de Espanha (DAC)*
10:30	Recursos Geotérmicos dos Açores Diretora Regional de Energia, em representação do Governo Regional dos Açores, Andreia Carreiro		Geothermal Energy - the italian experience Diretor da Unidade de Minas, Hidrocarbonetos e Georecursos da Direção para a Segurança, Minas e Energia de Itália (DGS–UNMG), Marcello Sarall
10:45	Geotermia na Madeira - Avaliação preliminar e perspetivas da EEM Representante da Empresa de Eletricidade da Madeira, Agostinho Figueira		Developing the Geothermal Resource - the icelandic example Diretor Geral da Autoridade Nacional de Energia da Islândia, Guôni A. Johannesson
11:00	Intervalo para Café		Debate 15 min
11:15	Painel I - Casos de Estudo de Aproveitamento	16:30	Intervalo para Café
	dos Recursos Geotermicos em Portugal Moderador – (a indicar)	16:45	Painel IV – Empresas e Investimento em Geotermia na Europa
	Aproveitamentos Geotérmicos em S. Pedro do Sul: situações atuais e perspetivas para o futuro		Moderador - Prof. Mário Machado Leite, Laboratório Nacional de Energia e Geología
	Diretor Técnico das Termas de São Pedro do Sul e Professor da Universidade da Beira Interior, L. M. Ferreira Gomes		Orador da Electricidade dos Açores (EDA)* Orador da Entidade Nacional para a Energia Elétrica de Itália (ENEL)*
	40 Anos de Geotermia em Termas Portuguesas: o caso das Caldas de Chaves		Debate 15 min
	Representante do Município de Chaves, J. Martins Carvalho Aproveitamento Geotérmico Superficial do Ombria Resort Consultora Técnica da Quinta da Ombria / SYNEGE, Rita Cerdeira Debate 15 min	17:25	Apresentação das Linhas Orientadoras das candidaturas a Aviso do FAI - Estudos da Aproveitamento do Potencial Geotérmico Superficial em Portugal - Promoção da Ultização da Energia Geotérmica em Portugal Comissão Executiva do Fundo de Apoio à Inovação, Ordense do Unida Com Jundo de Apoio à Inovação,
12:15	Percent - Promoção de Eficiência Energética		
	Investigador auxiliar do Laboratório Nacional de Engenharia Civil, Armando Pinto	17:45	Visita ao Aproveitamento Geotérmico de São Pedro do Sul - Opcional
12:30	Almoço Volante	19:00	Sessão de Encerramento Auditório Principal Presidente do Laboratório Nacional de Energía e Geología, Teresa Ponce de Leão
			Intervenção do Secretário de Estado da Energia, Jorge Seguro Sanches
			Intervenção da Secretária de Estado do Turismo, Ana Mendes Godinho

* a confirmar

Calls for the submission of applications for the granting of financial incentives in the form of non-refundable grants to **projects in the Lower Enthalpy Geothermal Area**.

 Call 04.1/2018 – Geothermal potential of hydromineral and geothermal resources

 Call 05/2018 – Investments that enhance and value the use of Geothermal Resources

• Call 04.1/2018 – Geothermal potential of hydromineral and geothermal resources

Objective: To assess the exploitation potential of hydromineral and geothermal resources and their use for T> 25°C.

It is intended to obtain more detailed information about the possibility of geothermal use of the resource, namely for air conditioning, DHW production and heating of swimming pools, Spa buildings, hotels, etc., in order to make a better use of the resource.

Call 04.1/2018 – Geothermal potential of hydromineral and geothermal resources

• Call 05/2018 – Investments that enhance and value the use of Geothermal Resources

Objective: To make investments that enhance the use of geothermal resources, such as the development and expansion of the heat distribution network, connection to the heat distribution network of new users of this renewable source and the installation of equipment for the use of heat for air conditioning and / or DHW production.

PROPOSED SHALLOW GEOTHERMAL LEGISLATION

Following the creation of a Working Group, coordinated by DGEG, and with the collaboration of various institutions related to the shallow geothermal theme, a draft law was developed for the legal regime of the exploration of surface geothermal resources with a view to its use for cold or heat production.

Direção Geral de Energia e Geologia

Agência Portuguesa do Ambiente

Laboratório Nacional de Energia e Geologia

Turismo de Portugal

Gov. Reg. Açores – Direção Regional de Apoio ao Investimento e à Competitividade

Governo Regional dos Açores – Direção Regional de Energia

Gov. Reg. da Madeira – Direção Regional de Economia e Transportes

Associação Nacional de Municípios Portugueses

Associação Portuguesa de Geólogos

Associação Portuguesa dos Industriais de Água Mineral Natural e de Nascente

Associação das Termas de Portugal

Ordem dos Engenheiros

Ordem dos Engenheiros Técnicos

Shallow Geothermal Systems- Renewable Energy Legal Framework

Diretive 2009/28/CE- Renewable Energies-

- No. 4 do Article 5^o: predicts that the energy collected by heat pumps can be accounted for in order to meet the 31% target of renewable energy in national energy consumption by 2020 (in accordance with Annex VII);
- No. 3 do Article 14^o: provides that certification or equivalent qualification systems are available for installers of:
 - Photovoltaic Systems; Bioenergy Systems
 - Thermal Solar Systems

- Heat Pumps;
- Shallow geothermal systems

The Renewable Energy Directive was transposed into the domestic legal framework by D.L. No. 141/2010 of December 31, amended by D.L. No. 39/2013 of 18 March.

geothermal energy: "the energy stored as heat beneath the solid surface of the Earth"

Portugal has not regulated surface geothermal systems yet.

Shallow Geothermal Systems- Renewable Energy Legal Framework

Diretive (EU) 2018/2001, of11.12.2018 – Renewable Energy (recast)

• No. 3 do Article 7^o: provides that the energy captured by heat pumps may be accounted for for the purpose of meeting the 2030 renewable energy target (in accordance with Annex VII);

• No. 3 do Artiche 18^o: provides that certification or equivalent qualification systems are available for installers of:

 Small biomass boilers and ovens; 	 Photovoltaic solar systems;
- Solar thermal systems;	 Shallow geothermal systems
- Heat pumps;	

It must comply with the requirements set out in Annex IV to the Directive, including mutual recognition between EU Member States.

By 31 December 2021, the Commission shall adopt a methodology for calculating the amount of renewable energy used for district heating and cooling, and will revise Annex VII. This methodology shall include minimum seasonal performance factors for inverted cycle heat pumps.

4. GEOTHERMAL RESOURCES - LEGAL FRAMEWORK

Shallow Geothermal Systems- Renewable Energy Legal Framework

• In 2016 the Profile of Renewable Energy Thermal Systems Installer was created, within the scope of ANQEP's National Qualifications Catalog:

- Solar Thermal Systems;
- Bioenergy Systems;
- Geothermal Heat Pumps Systems.
- The training of these technicians includes a Surface Geothermal module and, at the set of short training units, a 50 hour module for Surface Geothermal Systems.

The promotion and development aspect of renewable energy is intertwined with other measures, involving the promotion of energy efficiency improvements, namely the focus on heating and cooling efficiency from endogenous renewable sources, such as geothermal energy, in order to gradually replace fossil sources of heat and contribute to the achievement of the EU and Portugal targets and objectives in these areas.

Whereas:

The dual role of geothermal energy in promoting renewable energy sources and improving the energy efficiency of buildings;

That high temperature geothermal resources already have a current legal framework,

more favorable conditions should be created for the development of initiatives aimed at harnessing shallow geothermal systems, usually of very low enthalpy, by its potential for exploitation through geothermal heat pumps for the production of heating and cooling.

The application of D.L. No. 87/90 of March 16 to shallow geothermal systems would make their legalization very heavy.

A new lighter framework for the so-called shallow geothermal systems is intended, with the following concerns:

• Obtain the necessary data so that geothermal energy use can be accounted for in order to meet the targets set by Directive (EU) 2018/2001;

Safeguard hydromineral resources / drinking water by giving a favorable opinion from DGEG and/or APA, given that certain types of facilities for the use of geothermal energy may interfere with the exploitation of these resources;

D Site identification, including georeferencing by hole coordinates in the PT TM06 / ETRS89 system.

Thank you for your attention

www.dgeg.gov.pt

Carla.lourenço@dgeg.gov.pt luis.silva@dgeg.gov.pt

